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Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals
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We present a numerical study of the localized transverse magnetic~TM! defect modes in a two-dimensional,
triangular-lattice photonic crystal. The sample consists of an array of circular, air cylinders in a dielectric
medium~GaAs!. The defect modes were calculated by using a parallel version of the finite-difference time-
domain method on the Yee mesh. To validate our computations the results for the transverse electric case were
checked against experimental results and the numerical results using a different method. We study the spatial
symmetry for TM modes, obtained by changing the dipole excitation frequency. Also, we vary the defect-
cylinder radius to tune the resonant frequency across the band gap. The TM mode is found to be highly
localized at the defect in the photonic lattice.
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I. INTRODUCTION

Photonic crystals are a novel class of optical mater
fabricated with at least two different dielectric permittivitie
in a periodic arrangement. They have the ability to suppr
enhance, or otherwise control the emission of light in a
lected frequency range by altering the density of states
complete photonic band gap~PBG!, i.e., a range of frequen
cies for which light cannot propagate through the crysta
any direction, is a spectral region where the density of sta
in an infinite crystal vanishes. Interest in photonic cryst
has grown, since attention was independently directed
their unusual electromagnetic properties by Yablonovitch@1#
and John@2# in 1987. A defect in the sample can embed
local mode whose resonant frequency appears inside
band gap. The field energy is also confined to a region c
to the defect. This defect mode acts like a cavity and
electromagnetic emission rate can be calculated by appl
Fermi’s Golden rule, which establishes a proportionality
lation between the emission rate and the product of the m
density and of the matrix element for the field-atom inter
tion.

Subsequent developments in the field produced many
tential applications based on a new basic features of phot
crystals: the symmetry of the eigen modes, the resona
localization of light in a bulk material, and the suppression
spontaneous emission. The latter two properties are a co
quence of a complete PBG. Emission rate calculations m
vate further investigations of localized eigen modes of
radiation field. Especially interesting is to achieve a hi
quality factor ~Q! and confine the mode to a small volum
@3#. These properties can be realized by introducing a de
in a photonic microstructure@8,9#.
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‡Email address: deng@ams.sunysb.edu
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In this paper we simulate numerically the electromagne
radiation process by placing an oscillating dipole mom
into the photonic crystal. Photonic crystals may also be
plied to the design of low threshold lasers. The dipole plac
in or near the dielectric defect radiates into the lasing mo
The results provide the eigen-mode symmetry and profile
the active region of the laser. Previous calculations on de
modes have used a number of numerical techniques: pl
wave expansion methods@4–6#, finite difference algorithms
based on the scalar wave equation@7#, and finite-difference
time domain methods@9#. We developed a parallel version o
the finite difference-time domain method, which can equa
well deal with complex geometries and finite boundaries.
addition, we present a detailed study of a transverse m
netic ~TM! defect mode.

The underlying theory and the computational metho
used in calculating the electromagnetic field are discusse
the following section. Our program is validated by a calc
lation of a transverse electric defect mode for a square
triangular lattice of dielectric rods. In these cases both th
retical and experimental results are available. We sh
agreement among our results, experiment, and previo
published result. In Sec. III we examine the TM defe
modes of a triangular lattice of air rods. Two defect mod
are identified corresponding to theE1 andB2 symmetry for
the C6v point group. We examine the dependence of
resonance frequency and energy localization in the neigh
hood of the defect with defect radius. Special attention
been given to observations of defect-mode localization~mea-
sured as the field energy in a central, defect photonic lat
cell!. This is the property that ultimately determines the a
plicability of these modes and structures to photonic devi
~as it is closely related to theQ factor in finite structures!.

II. METHODS OF CALCULATION

The theory of dipole radiation in arbitrary photonic cry
tals has been developed by Sakoda and Ohtaka@10#, based
©2001 The American Physical Society14-1
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on a Green’s-function formalism. Our analysis starts w
Maxwell’s equations:

“•$e~r !E~r ,t !14pPd~r ,t !%50, ~1!

“•H~r ,t !50, ~2!

“3E~r ,t !52
1

c

]

]t
H~r ,t !, ~3!

“3H~r ,t !5
1

c

]

]t
$e~r !E~r ,t !14pPd~r ,t !%, ~4!

where e(r ) denotes the position-dependent dielectric co
stant of the photonic lattice.e(r ) is a periodic function ex-
cept for disorder caused by dielectric defect.Pd(r ,t) is the
polarization field of the oscillating dipole, whose explic
complex form is

Pd~r ,t !5md~r2r0!exp~2 ivt !. ~5!

Here, m, r0, and v, are the electric dipole moment, d
pole’s position vector, and the angular driving frequen
respectively, andd denotes the Dirac delta function.

The method developed for regular lattices can be app
to our problem, adding the defect mode to the exten
Bloch states. Hereafter,Ed(r ) stands for the eigen functio
of the defect mode andvd for its eigen-angular frequency
With the assumption thatv is close tovd and neglecting the
contribution from all other modes, the complex electric fie
in presence of the defect is

E~r ,t !.2
2pvd$mEd* ~r0!%Ed~r !exp~2 ivt !

V~v2vd1 iG!
, ~6!

whereEd is the normalized electric field

E
V
e~r !uEd~r0!u2dr5V. ~7!

In Eq. ~6!, G is the decay rate of the defect mode,V is the
volume over which periodic boundary conditions are i
posed. The electromagnetic energyU emitted per unit time
by the oscillating dipole placed atr0 is found from the ex-
pression~see@7#!

U.2
pvd

2GumEd~r0!u2

V$~v2vd!21G2%
. ~8!

From the last equation it follows that the frequency d
pendence ofU determines the eigen-angular frequency of
defect modevd as the resonant frequency. We develope
numerical procedure to find the frequency dependence oU.

We apply the finite-difference time-domain~FDTD!
method to solve Maxwell equations@Eqs. ~1!–~4!#. More
specifically, we applied the nondissipative Yee’s algorith
with a duality relation between the spatial representation
the electric and magnetic fields that represents both the
ferential and integral forms of Maxwell equations, Refs.@11#
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and @12#. The Yee mesh is divergence-free with respect
the electric and magnetic fields and it is suitable for spec
ing field boundary conditions and singularities.

To shorten the computational run time we developed
parallel code, which was run on a Pentium III linux clust
~the results described here are obtained from runs on 31
cessors!. The computational domain consists of 19 photon
lattice cells in the periodic structure fore in the x and y
direction and 8 mesh cells in thez direction. Each photonic
lattice cell has been divided into 40340 computational mesh
cells, but due to duality of the discretization mesh~see@11#!,
effectively we determined each field on only 20320 points
inside a photonic lattice cell. Periodic boundary conditio
were used in all three directions. Each period of oscillat
was divided into 90 timesteps for the numerical integratio
A typical 50-period run~about 4500 timesteps! required 50
min of run time.

The vector electromagnetic field in the two-dimension
~2D! photonic lattice can be decoupled into two independ
modes, transverse electric~TE! where theE field is perpen-
dicular to the plane of periodicity. The nonzero field comp
nents are (Ez , Hx , Hy). The TM case has theH field per-
pendicular to the plane and the nonzero field compone
are: (Ex , Ey , Hz). In our calculations we do not prescrib
the mode, but choose the mode based on the orientatio
the dipole. For the TE case we introduce a line of dipoles
the center of the defect. The dipole is oriented perpendic
to the photonic crystal plane.

TE defect modes have been thoroughly investigated
two-dimensional photonic lattices~square and triangular!
~e.g., Refs.@7,13,14#!. The calculation of the TE modes in
square lattice served as a verification of our results.
found very good agreement with numerical results obtain
from a discretized scalar wave equation method. Both co
pared very well with experimental results of McCallet al.
@15#, who fabricated a 2D square photonic lattice. The
electric rods were circular cylinders with the radiusR
50.48 cm and dielectric constant 9.0. The lattice const
wasa51.27 cm. The rods were immersed into air (e51.0)
for a large dielectric contrast.

The electromagnetic energy radiated by the line of os
lating dipoles as a function of the oscillation frequency
shown in Fig. 1. The lattice defect is the removal of a diele
tric rod from the center of the lattice. A resonance frequen
is clearly identified after 20 periods and continues to shar
as energy continues to build up in the defect mode. A plo
the electric field profile along thex axis in Fig. 2 shows the
field is concentrated close to the defect. The resonant
quency results agree with the aforementioned results of
Call and Sakoda. The variation between our and experim
tal result is less than 0.6%. The field is confined to a reg
around the defect extending out to about three lattice c
stants. Similar comparison has been made for the TE mo
on a triangular lattice~dielectric rodse59.0 immersed in air,
R50.48 cm, a51.27 cm) where results were as follow
Sakoda’s scalar FDTD method resulted in a resonanc
11.05 GHz@7#, experiment by Smithet al. yielded a reso-
4-2



-
th

T
n
a
ce

.0
u
a

ic

be
n
r.

he
hod
by

ves
and
few
ists

and
ob-
enth
ribe
and

fr
b

th
ice

ds

the

fo

ar
-

lar
or-

sion
ere
-

., the
t

TRANSVERSE MAGNETIC DEFECT MODES IN TWO- . . . PHYSICAL REVIEW E 64 056614
nance at 11.23 GHz@5#, while our calculation showed a reso
nance at 11.29 GHz. The deviation of our result from
experiment is about 0.5%.

III. TM MODES

Since the square lattice does not have a band gap for
modes, we model a triangular lattice containing air holes i
dielectric matrix. A defect in the form of an air hole with
modified radius was introduced in the center of our latti
The lattice geometry is depicted in Fig. 3.e1 is the dielectric
constant of the air rods, whose value is 1.0.e2 is the dielec-
tric constant of the background matrix and its value is 13
The results are scalable to any lattice parameter, so we q
parameters scaled by the lattice constant. We chose to m
the defect hole smaller than the holes in the rest of the latt

FIG. 1. The electromagnetic energy radiated versus scaled
quency for a square lattice with a defect. The radiation is emitted
a vertical, oscillating dipole moment located at the center of
grid. A rod was removed from the center of the lattice; the latt
parameters areR/a50.378, e rod59, andematrix51. The labeled
curves represent the energy after 10, 20, 30, 40, and 50 perio
oscillation.

FIG. 2. The electric field as a function of the distance from
dipole after 100 periods of oscillations forva/2pc50.467 for the
square photonic lattice with a defect. See the caption in Fig. 1
details.
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e

M
a

.

.
ote
ke
e.

The orientation of the oscillating dipole can be chosen to
in x and/ory direction. Depending on the dipole excitatio
and the size of the defect rod, different modes will appea

The band structure of TM modes is shown in Fig. 4. T
calculation is based on the plane-wave expansion met
with 919 basis vectors. The relative error is determined
comparing the results for different numbers of plane wa
with the asymptotic value. The error depends on the b
number and increases from less than 1% for the first
bands up to 6% for the eighth band. The first gap ex
between the first and second bands, i.e., between 0.375
0.52 in normalized frequency units. The second gap
served for this set of parameters was between the sev
and eight bands. In the next few paragraphs we will desc
the modes. The horizontal dashed lines delineate the b
gap edges.

e-
y
e

of

r

FIG. 3. The top view of the two-dimensional array of circul
rods used for the calculation.e1 and e2 denote the dielectric con
stants of the rods or of the embedding matrix material;R andr are
the radii of the lattice rods and the defect rod, respectively.a de-
notes the lattice constant.

FIG. 4. The photonic band structure of the regular triangu
lattice for TM polarization, where the ordinate represents the n
malized frequency. This is calculated by a plane-wave expan
method using 919 basis functions. The following parameters w
assumed:R/a50.48,e151, e2513. A large band gap exists be
tween 0.375 and 0.52 in the normalized units. TheG-X direction is
along the second-nearest neighbor lines through the crystal, e.g
y direction in Fig. 3, and theG-X direction is along the neares
neighbor lines through the crystal, e.g. thex direction.
4-3
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N. STOJIĆ, J. GLIMM, Y. DENG, AND J. W. HAUS PHYSICAL REVIEW E64 056614
To illustrate that the TM modes have well defined res
nance frequencies we place a line of dipoles at the cente
the defect rod. The defect radius to unit cell ratio isr /a
50.35. The dipoles are driven at different frequencies a
the radiated energy is computed. Figure 5 shows the elec
magnetic energy radiated as a function of the oscillation
quency. There is a resonance peak ata/l50.461 (a/l
5va/2pc); this is the eigen frequency of the defect mod
The peak in the radiated energy spectrum is well establis
after 25 oscillation periods and it continues to grow and n
row with elapsed time. After 100 oscillation periods the fu
width at half maximum of the resonance is about 0.0
which corresponds to aQ factor of around 100. The reso
nance continues to grow and narrow and we observed
saturation of the resonance width. We can conclude that
Q factor is larger than observed after 100 oscillation perio

The crystal hasC6v symmetry and therefore six irreduc
ible representations:A1 , A2 , B1 , B2 , E1, and E2. By
changing the radius of the defect rod and the dipole orie
tion different defect modes with different symmetries cou
appear. For the defects we considered we found that
defect modes were excited. The magnetic field is plotted
Fig. 6 for a defect air-rod radius ofr /a50.35. This defect
mode corresponds to theE1 symmetry. TheH field is con-
centrated in the regions with larger dielectric constant as
served for theE field in similar cases, e.g. see@18#. The
defect mode was excited by dipoles oscillating alongy direc-
tion defined by Fig. 3.B2 mode has been found for smalle
defect radii, Fig. 7.

Figure 8 demonstrates the TM resonances for seven
ferent defect-radius ratios,r /a; values of the defect radiu
were between 0.26 and 0.43 for this figure; the result is
radiated energy after 100 periods of oscillation. For rat
whose eigen-frequencies approached the upper band
edge, radiated energy was found to rapidly decrease.
maximum energy is radiated for the modes correspondin
the smallest defect radii.

The resonance frequency data for defect modes is c
piled in Fig. 9. Each data point is extracted from a resona
curve for one particular defect-rod radius. The local mode

FIG. 5. The frequency dependence of the accumulated ele
magnetic energy for anE1 mode radiated by an oscillating dipole
the center of the defect after 25, 50, 75, and 100 periods of o
lation. The defect rod radius isr /a50.35.
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confined to the PBG frequency band. The horizontal lines
the figure represent the boundaries of the band gap. As
ratio r /a increases, the frequencies of the photonic crys
modes tend to rise monotonically and linearly due to
larger air fraction and resulting lower average index.

o-

il-

FIG. 6. The spatial distribution of the magnetic field after 1
oscillation periods at the scaled angular frequencyva/2pc
50.411. The mode’s symmetry corresponds to theE1 mode. The
ratio of the defect radius to the lattice unit cell isr /a50.28. Dark
shades correspond to negative amplitude values and light sh
correspond to positive amplitude values.

FIG. 7. The spatial distribution of the magnetic field after 1
oscillation periods at the scaled angular frequencyva/2pc50.48.
The mode’s symmetry corresponds to theB2 mode. The ratio of the
defect radius to the lattice unit cell isr /a50.00. Dark shades cor
respond to negative amplitude values and light shades correspo
positive amplitude values.
4-4
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TRANSVERSE MAGNETIC DEFECT MODES IN TWO- . . . PHYSICAL REVIEW E 64 056614
shown in@16# and @17#, the eigen frequency is proportiona
to 1/Aede f ect. With decreasing defect radius, the effecti
dielectric constant at the defect increases proportionally
r 2. Hence, in our case with constant dielectric constant
variable defect radius, the eigenfrequency versus defec
dius relation becomes:vd;r de f ect.

By rotating the orientation of the dipole by 90°, the se
ondE1 defect mode, rotated by 90° is found. It is degener
with the first mode. By combining both orientations, we o
tained again the same mode rotated by 45°. We could
excite any totally symmetric mode most likely because of
incompatible symmetries~the dipole source produces an a
tisymmetric electric field!. All the fields are strongly local-
ized around the defect. The vector electric field is plotted
arrows in Fig. 10. The length of the vector is proportional
the field strength. This corresponds toE1 mode behavior of
the magnetic field in Fig. 6. Figure 11 shows theE1 mode in
a second band. This is the only mode found in the sec
gap region. As observed previously by Sakoda and Shiro
@16#, the spatial variation of the electric fields is faster for t
modes in the second gap, than for those in the first gap.

In order to compare the localization properties ofE1
mode for different frequencies~i.e., ratiosr /a) the local en-
ergy at the defect is examined. This is determined by

FIG. 8. The radiated electromagnetic energy for different defe
radius ratiosr /a as a function of the scaled frequency.

FIG. 9. The eigenfrequency of the localized defect modes a
function of the radius of the defect rod. The ordinate is the norm
ized frequency and horizontal lines represent the boundaries o
photonic band gap calculated from Fig. 4.
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fraction of the radiated energy concentrated at the defect
cell. Our results are presented in Fig. 12, where the de
cell energy is expressed as a percentage of the total rad
energy. Each frequency corresponds to a certain defect
radius. The precise correlation between the frequency
defect-rod radius can be extracted from Fig. 9. The gen
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FIG. 10. The vector representation of the electric field for theE1

mode after 100 periods of oscillation atva/2pc50.461. The ratio
of the defect radius to the lattice unit cell is 0.35.

FIG. 11. The spatial distribution of the magnetic field after 1
oscillation periods at the scaled angular frequencyva/2pc51.11
in the second band gap. The mode’s symmetry corresponds to
E1 mode. The ratio of the defect radius to the lattice unit cell
r /a50.34. We observe higher spatial frequency variations than
the mode in the first gap. Dark shades correspond to negative
plitude values and light shades correspond to positive amplit
values.
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position of the points shows the increase of the energy at
defect cell with the reduction of the defect radius, whi
confirms, once again, that electric field tends to localize
the areas with large dielectric constant.

As found in@7#, the eigen frequencies of the defect-mod
depend on the number of photonic crystal layers. We a
calculated the resonance frequencies for different super
and the results are given in Fig. 13. After only a few~2–3!
photonic crystal layers the eigen frequency reaches
asymptotic value. The mode is localized very close to
defect. Since our geometry is similar to a photonic crys
fiber, we believe that the large index contrast between
defect and holes confines the field in a region whose widt
the order of a wavelength. This would occur only for the T
polarization,~since the TE mode has electric field along t
rods!, and may explain the fact that the TM mode sho
stronger localization than the TE case considered in@7#.

IV. CONCLUSION

In this paper the results of parallel numerical simulatio
of dipole radiation, based on the Yee’s mesh finite-differen
time-domain method are presented. To overcome the la
computational demands of Yee’s algorithm, we develope
parallel program that improved the speed of the compu
tions with parallel efficiency of 0.7. No symmetry was a
sumed for the modes to reduce the lattice size. Localized
defect modes were examined in a two-dimensional photo
crystal triangular lattice composed of air cylinders drill
into a dielectric host. Our study was motivated by results
the TE defect modes by Sakoda and Shiroma@16#. The de-
fect was varied by changing the radius of the central cy
der. To validate parallel computer code, we compared
results with previously reported results of Sakoda and
periments of McCallet al. on TE modes in a square lattic
with a missing defect cylinder. We established a very go
correspondence between the results obtained by diffe
methods.

In the TM defect-mode computations we used a triangu
lattice and dielectric materials that yielded a fairly large ba
gap for TM modes, when the dielectric constant of the m

FIG. 12. The ratio of the field energy at a defect cell to the to
energy as a function of resonant frequency, which is related to
defect radius.
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dium is 13~GaAs!. The ratio of rod radius to the lattice un
cell constant,R/a is 0.48 and we considered smaller defe
rod radii in our computations. TheE1 and B2 modes were
found in the first PBG. In the second PBG, we found theE1
mode only. We showed the spatial distribution of the ma
netic and electric fields and the movement of the mode re
nance through the photonic band gap as the defect radiu
changed. In addition, we determined the dependence of
localization~the field energy confined at the defect cell! on
frequency~defect-rod radius!. We also studied the depen
dence of the eigen frequencies on the number of photo
lattice cells.

TM defect modes have not been previously reported
the pure two-dimensional lattice, due to the poor conv
gence of the previously used plane-wave expansion meth
and numerical instability of the discretization of the sca
wave equation. Painteret al. @9# studied TM defect modes in
dielectric slabs. They calculated the changes in the reson
frequency with the slab thickness and the defect size. In t
data the changes are linear in slab thickness and
asymptotic frequency for two dimensions cannot be deduc
The frequency changes by more than 20% when the th
ness changes by a factor of two. Johnsonet al. @19#, calcu-
lated TE-like and TM-like guided modes in a two
dimensional periodic dielectric structures with index guidi
to confine light in the third dimension. Although somewh
similar, their problem does not discuss defects and is ba
on a different technique.

Figures 12 and 13 show a surprisingly strong localizat
of the E1 defect mode around the defect cylinder. From th
result we infer that only a few lattice cells around a defe
are required for good confinement and highQ factors.
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