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Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals
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We present a numerical study of the localized transverse madidicdefect modes in a two-dimensional,
triangular-lattice photonic crystal. The sample consists of an array of circular, air cylinders in a dielectric
medium(GaAs. The defect modes were calculated by using a parallel version of the finite-difference time-
domain method on the Yee mesh. To validate our computations the results for the transverse electric case were
checked against experimental results and the numerical results using a different method. We study the spatial
symmetry for TM modes, obtained by changing the dipole excitation frequency. Also, we vary the defect-
cylinder radius to tune the resonant frequency across the band gap. The TM mode is found to be highly
localized at the defect in the photonic lattice.
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I. INTRODUCTION In this paper we simulate numerically the electromagnetic
radiation process by placing an oscillating dipole moment

Photonic crystals are a novel class of optical materialsnto the photonic crystal. Photonic crystals may also be ap-
fabricated with at least two different dielectric permittivities plied to the design of low threshold lasers. The dipole placed
in a periodic arrangement. They have the ability to suppressn or near the dielectric defect radiates into the lasing mode.
enhance, or otherwise control the emission of light in a seThe results provide the eigen-mode symmetry and profile in
lected frequency range by altering the density of states. Ahe active region of the laser. Previous calculations on defect
complete photonic band gdpBG), i.e., a range of frequen- modes have used a number of numerical techniques: plane-
cies for which light cannot propagate through the crystal inyave expansion methodd—6], finite difference algorithms
any direction, is a spectral region where the density of state§ased on the scalar wave equat[ai, and finite-difference
in an infinite crystal vanishes. Interest in photonic crystalsime domain methodi®]. We developed a parallel version of
has grown, since attention was independently directed tghe finite difference-time domain method, which can equally
their unusual electromagnetic properties by Yablonoifidh el deal with complex geometries and finite boundaries. In
and Johr(2] in 1987. A defect in the sample can embed agddition, we present a detailed study of a transverse mag-
local mode whose resonant frequency appears inside thestic (TM) defect mode.
band gap. The field energy is also confined to a region close The underlying theory and the computational methods
to the defect. This defect mode acts like a cavity and ity sed in calculating the electromagnetic field are discussed in
electromagnetic emission rate can be calculated by applyinghe following section. Our program is validated by a calcu-
Fermi's Golden rule, which establishes a proportionality re4ation of a transverse electric defect mode for a square and
lation between the emission rate and the product of the modgjangular lattice of dielectric rods. In these cases both theo-
density and of the matrix element for the field-atom interac+etical and experimental results are available. We show
tion. agreement among our results, experiment, and previously
Subsequent developments in the field produced many pgsuplished result. In Sec. Ill we examine the TM defect
tential applications based on a new basic features of photonigodes of a triangular lattice of air rods. Two defect modes
crystals: the symmetry of the eigen modes, the resonancge identified corresponding to i andB, symmetry for
localization of light in a bulk material, and the suppression ofihe Ce, point group. We examine the dependence of the
spontaneous emission. The latter two properties are a consgssonance frequency and energy localization in the neighbor-
quence of a complete PBG. Emission rate calculations motihgod of the defect with defect radius. Special attention has
vate further investigations of localized eigen modes of theygen given to observations of defect-mode localizatinea-
radiation field. Especially interesting is to achieve a highgyred as the field energy in a central, defect photonic lattice
quality factor(Q) and confine the mode to a small volume cel)). This is the property that ultimately determines the ap-
[3]. These properties can be realized by introducing a defegijicability of these modes and structures to photonic devices

in a photonic microstructurgs,9]. (as it is closely related to th® factor in finite structures
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on a Green’s-function formalism. Our analysis starts withand[12]. The Yee mesh is divergence-free with respect to
Maxwell's equations: the electric and magnetic fields and it is suitable for specify-
ing field boundary conditions and singularities.

To shorten the computational run time we developed a
parallel code, which was run on a Pentium Il linux cluster
(the results described here are obtained from runs on 31 pro-
19 cessors The computational domain consists of 19 photonic

V XE(r,t)=—— —H(r,t), 3 lattice cells in the periodic structure far in the x andy

c ot direction and 8 mesh cells in thedirection. Each photonic

19 lattice cell has been divided into 4310 computational mesh
VXH(rt)== —{e(r)E(r,t)+4mPy(r,t)}, (4)  cells, but due to duality of the discretization méske[11]),
c effectively we determined each field on only>200 points

where €(r) denotes the position-dependent dielectric conJnside a photonic lattice cell. Periodic boundary conditions

stant of the photonic lattices(r) is a periodic function ex- VE'e used in all three directions. Each period of oscillation
cept for disorder caused by dielectric defeRy(r,t) is the was divided into 90 timesteps for the numerical integration.
polarization field of the oscillating dipole, whose explicit 2 YPical 50-period runabout 4500 timestepsequired 50

V - {e(r)E(r,t)+4mPy(r,t)}=0, (1)

V- H(r,t)=0, (2

complex form is min of run time. - _ _
The vector electromagnetic field in the two-dimensional
Py(r,t)=ud(r —rg)exp( —iwt). (5) (2D) photonic lattice can be decoupled into two independent

o ~ modes, transverse elect(€E) where theE field is perpen-
Here, i, 1o, and w, are the electric dipole moment, di- dicular to the plane of periodicity. The nonzero field compo-
pole’s position vector, and the angular driving frequency.nents are ,, H,, H,). The TM case has thel field per-

respectively, and denotes the Dirac delta function. _ pendicular to the plane and the nonzero field components
The method developed for regular lattices can be applied ;.. €y, E,, H,). In our calculations we do not prescribe

to our problem, adding the defect mode t(,) the extgndeqjhe mode, but choose the mode based on the orientation of
Bloch states. HereafteEq(r) stands for the eigen function the dipole. For the TE case we introduce a line of dipoles at

of.the defect mer anad .for its eigen-angular frequency. the center of the defect. The dipole is oriented perpendicular
With the assumption thab is close towy and neglecting the .
oo . . to the photonic crystal plane.
contribution from all other modes, the complex electric field . . .
: . TE defect modes have been thoroughly investigated in
in presence of the defect is . : . : ;
two-dimensional photonic latticessquare and triangular
2mog{ LES (ro) JEq(r)exp(—iwt) (e.g., Refs[7,13,14). The calculation of the TE modes in a
. , (6 square lattice served as a verification of our results. We
V(w—wg+il’) - . .
found very good agreement with numerical results obtained
whereE, is the normalized electric field from a discretized scalar wave equation method. Both com-
pared very well with experimental results of McCal al.
5 [15], who fabricated a 2D square photonic lattice. The di-
Jvf(r)|Ed(r0)| dr=V. (") electric rods were circular cylinders with the radifs
=0.48 cm and dielectric constant 9.0. The lattice constant
In Eq.(6), T is the decay rate of the defect modleis the =~ wasa=1.27 cm. The rods were immersed into aér<1.0)
volume over which periodic boundary conditions are im-for a large dielectric contrast.

E(r,t)=-—

posed. The electromagnetic enerdyemitted per unit time The electromagnetic energy radiated by the line of oscil-
by the oscillating dipole placed af is found from the ex- lating dipoles as a function of the oscillation frequency is
pression(see[7]) shown in Fig. 1. The lattice defect is the removal of a dielec-
tric rod from the center of the lattice. A resonance frequency

Twil'| wEqy(ro)|? is clearly identified after 20 periods and continues to sharpen

= Vi(w— wd)2+1~2}' ®) as energy continues to build up in the defect mode. A plot of

the electric field profile along the axis in Fig. 2 shows the

From the last equation it follows that the frequency de-field is concentrated close to the defect. The resonant fre-
pendence ob) determines the eigen-angular frequency of thequency results agree with the aforementioned results of Mc-
defect modewy as the resonant frequency. We developed &Call and Sakoda. The variation between our and experimen-
numerical procedure to find the frequency dependendé. of tal result is less than 0.6%. The field is confined to a region

We apply the finite-difference time-domai@FDTD) around the defect extending out to about three lattice con-
method to solve Maxwell equatior[€gs. (1)—(4)]. More  stants. Similar comparison has been made for the TE modes
specifically, we applied the nondissipative Yee's algorithmon a triangular latticédielectric rodse= 9.0 immersed in air,
with a duality relation between the spatial representations o0R=0.48 cm, a=1.27 cm) where results were as follows:
the electric and magnetic fields that represents both the difSakoda’s scalar FDTD method resulted in a resonance at
ferential and integral forms of Maxwell equations, Réfisl]  11.05 GHz[7], experiment by Smitlet al. yielded a reso-
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) ) FIG. 3. The top view of the two-dimensional array of circular
FIG. 1. The electromagnetic energy radiated versus scaled fr&y,qs ysed for the calculatios, and e, denote the dielectric con-

quency for a square lattice with a defect. The radiation is emitted b\t~ nts of the rods or of the embedding matrix mateRaindr are

a vertical, oscillating dipole moment located at the center of thene radii of the lattice rods and the defect rod, respectivelge-
grid. A rod was removed from the center of the lattice; the lattice|,yie5 the lattice constant.

parameters ar&®/a=0.378, €,,4=9, and €y yix=1. The labeled

curves represent the energy after 10, 20, 30, 40, and 50 periods dthe orientation of the oscillating dipole can be chosen to be

oscillation. in x and/ory direction. Depending on the dipole excitation
and the size of the defect rod, different modes will appear.

nance at 11.23 GHZ], while our calculation showed a reso- ~ The band structure of TM modes is shown in Fig. 4. The

nance at 11.29 GHz. The deviation of our result from thecalculation is based on the plane-wave expansion method
experiment is about 0.5%. with 919 basis vectors. The relative error is determined by

comparing the results for different numbers of plane waves

with the asymptotic value. The error depends on the band

1. T™M MODES number and increases from less than 1% for the first few

bands up to 6% for the eighth band. The first gap exists
Since the square lattice does not have a band gap for TNdetween the first and second bands, i.e., between 0.375 and

modes, we model a triangular lattice containing air holes in @.52 in normalized frequency units. The second gap ob-
dielectric matrix. A defect in the form of an air hole with a served for this set of parameters was between the seventh
modified radius was introduced in the center of our latticeand eight bands. In the next few paragraphs we will describe
The lattice geometry is depicted in Fig. &. is the dielectric  the modes. The horizontal dashed lines delineate the band

constant of the air rods, whose value is Xk9is the dielec- gap edges.

tric constant of the background matrix and its value is 13.0.

e
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The results are scalable to any lattice parameter, so we quote 45 |
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FIG. 4. The photonic band structure of the regular triangular
lattice for TM polarization, where the ordinate represents the nor-
0.5 ; : ; ‘ : malized frequency. This is calculated by a plane-wave expansion
method using 919 basis functions. The following parameters were
assumedR/a=0.48,¢,=1, e,=13. A large band gap exists be-

FIG. 2. The electric field as a function of the distance from thetween 0.375 and 0.52 in the normalized units. ThX direction is
dipole after 100 periods of oscillations fara/2wc=0.467 for the  along the second-nearest neighbor lines through the crystal, e.g., the
square photonic lattice with a defect. See the caption in Fig. 1 foy direction in Fig. 3, and thd'-X direction is along the nearest
details. neighbor lines through the crystal, e.g. thdirection.

x/a
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FIG. 5. The frequency dependence of the accumulated electro-
magnetic energy for aB; mode radiated by an oscillating dipole at
the center of the defect after 25, 50, 75, and 100 periods of oscil-
lation. The defect rod radius ida=0.35.

To illustrate that the TM modes have well defined reso-
nance frequencies we place a line of dipoles at the center of FIG. 6. The spatial distribution of the magnetic field after 100
the defect rod. The defect radius to unit cell ratiorim  oscillation periods at the scaled angular frequenog/2mc
=0.35. The dipoles are driven at different frequencies and"0.411. The mode’s symmetry corresponds to Ehemode. The
the radiated energy is computed. Figure 5 shows the electrdatio of the defect radius to the Iattice. unit cellri/sa=0.28.. Dark
magnetic energy radiated as a function of the oscillation freShades correspond to negative amplitude values and light shades
quency. There is a resonance peak adh=0.461 @/\ correspond to positive amplitude values.
= wal27c); this is the eigen frequency of the defect mode.

The peak in the radiated energy spectrum is well establishegonfined to the PBG frequency band. The horizontal lines in
after 25 oscillation periods and it continues to grow and narthe figure represent the boundaries of the band gap. As the
row with elapsed time. After 100 oscillation periods the full ratio r/a increases, the frequencies of the photonic crystal
width at half maximum of the resonance is about 0.005modes tend to rise monotonically and linearly due to the
which corresponds to @ factor of around 100. The reso- larger air fraction and resulting lower average index. As
nance continues to grow and narrow and we observed no
saturation of the resonance width. We can conclude that the
Q factor is larger than observed after 100 oscillation periods.

The crystal hasCq, symmetry and therefore six irreduc-
ible representationsA;, A,, By, B,, E;, and E,. By
changing the radius of the defect rod and the dipole orienta-
tion different defect modes with different symmetries could
appear. For the defects we considered we found that two
defect modes were excited. The magnetic field is plotted in
Fig. 6 for a defect air-rod radius affa=0.35. This defect
mode corresponds to tie; symmetry. TheH field is con- ‘
centrated in the regions with larger dielectric constant as ob-
served for theE field in similar cases, e.g. s4&8]. The
defect mode was excited by dipoles oscillating algrtirec-
tion defined by Fig. 3B, mode has been found for smaller
defect radii, Fig. 7.

Figure 8 demonstrates the TM resonances for seven dif-
ferent defect-radius ratios/a; values of the defect radius
were between 0.26 and 0.43 for this figure; the result is the
radiated energy after 100 periods of oscillation. For ratios
whose eigen-frequencies approached the upper band gap

edge, radiated energy was found to rapidly decrease. The gig. 7. The spatial distribution of the magnetic field after 100

maximum energy is radiated for the modes corresponding t@scillation periods at the scaled angular frequen@/27c=0.48.

the smallest defect radii. The mode’s symmetry corresponds to Byemode. The ratio of the
The resonance frequency data for defect modes is conefect radius to the lattice unit cell i¢ga=0.00. Dark shades cor-

piled in Fig. 9. Each data point is extracted from a resonanceespond to negative amplitude values and light shades correspond to

curve for one particular defect-rod radius. The local mode igositive amplitude values.

A A
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FIG. 8. The radiated electromagnetic energy for different defect-
radius ratiog’/a as a function of the scaled frequency.

shown in[16] and[17], the eigen frequency is proportional
to 1N egetect With decreasing defect radius, the effective
dielectric constant at the defect increases proportionally to
r2, Hence, in our case with constant dielectric constant and FIG. 10. The vector representation of the electric field for&Ehe
variable defect radius, the eigenfrequency versus defect ranode after 100 periods of oscillation @&/27c=0.461. The ratio
dius relation becomesoy~r gefoct of the defect radius to the lattice unit cell is 0.35.

By rotating the orientation of the dipole by 90°, the sec-
ond E; defect mode, rotated by 90° is found. It is degeneratdraction of the radiated energy concentrated at the defect unit
with the first mode. By combining both orientations, we ob-cell. Our results are presented in Fig. 12, where the defect
tained again the same mode rotated by 45°. We could natell energy is expressed as a percentage of the total radiated
excite any totally symmetric mode most likely because of theenergy. Each frequency corresponds to a certain defect-rod
incompatible symmetrieghe dipole source produces an an- radius. The precise correlation between the frequency and
tisymmetric electric field All the fields are strongly local- defect-rod radius can be extracted from Fig. 9. The general
ized around the defect. The vector electric field is plotted by
arrows in Fig. 10. The length of the vector is proportional to
the field strength. This correspondsEe mode behavior of
the magnetic field in Fig. 6. Figure 11 shows themode in -~ - .
a second band. This is the only mode found in the second .
gap region. As observed previously by Sakoda and Shiroma
[16], the spatial variation of the electric fields is faster for the

modes in the second gap, than for those in the first gap. K
In order to compare the localization properties ©f - L4 v -
mode for different frequencigs.e., ratiosr/a) the local en- 3 4 .
ergy at the defect is examined. This is determined by the . .
0.55 ¥ | )
- s & s
05 ﬂﬁ,ﬁ """""""""""""" & ’
B o
< oas 2 EEF -
@ d
pﬂuf E1 - ‘
0.4 A
L N o
T T T T T T T e e FIG. 11. The spatial distribution of the magnetic field after 100
0.35 ; : : : oscillation periods at the scaled angular frequen@/27c=1.11
0 0.1 0.2 0.3 0.4 05

in the second band gap. The mode’s symmetry corresponds to the
E; mode. The ratio of the defect radius to the lattice unit cell is

FIG. 9. The eigenfrequency of the localized defect modes as a/a=0.34. We observe higher spatial frequency variations than for
function of the radius of the defect rod. The ordinate is the normalthe mode in the first gap. Dark shades correspond to negative am-
ized frequency and horizontal lines represent the boundaries of thglitude values and light shades correspond to positive amplitude
photonic band gap calculated from Fig. 4. values.

r/a
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FIG. 13. The dependence of eigenfrequencies on the number of

FIG. 12. The ratio of the field energy at a defect cell to the total : ) . . e
8hoton|c lattice unit cells ix(y) direction, L.

energy as a function of resonant frequency, which is related to th
defect radius.
dium is 13(GaAs. The ratio of rod radius to the lattice unit

position of the points shows the increase of the energy at theell constantR/a is 0.48 and we considered smaller defect-
defect cell with the reduction of the defect radius, whichrod radii in our computations. The, and B, modes were
confirms, once again, that electric field tends to localize irfound in the first PBG. In the second PBG, we found Ehe
the areas with large dielectric constant. mode only. We showed the spatial distribution of the mag-

As found in[7], the eigen frequencies of the defect-modesnetic and electric fields anq the movement of the mode reso-
depend on the number of photonic crystal layers. We als@ance through the photonic band gap as the defect radius is
calculated the resonance frequencies for different supercel@anged. In addition, we determined the dependence of the
and the results are given in F|g 13. After Only a f@v_3) |Oca|izati0n(the field energy confined at the defect ):dh
photonic crystal layers the eigen frequency reaches itfequency(defect-rod radius We also studied the depen-
asymptotic value. The mode is localized very close to thedence of the eigen frequencies on the number of photonic
defect. Since our geometry is similar to a photonic crystafattice cells. _
fiber, we believe that the large index contrast between the TM defect modes have not been previously reported for
defect and holes confines the field in a region whose width i§he pure two-dimensional lattice, due to the poor conver-
the order of a wavelength. This would occur only for the TM gence of the previously used plane-wave expansion methods
polarization,(since the TE mode has electric field along theand numerical instability of the discretization of the scalar

rodg’ and may exp|ain the fact that the TM mode ShowsWaVe equation. Painteat a|[9] studied TM defect modes in
stronger localization than the TE case consideref7]n dielectric slabs. They calculated the changes in the resonance

frequency with the slab thickness and the defect size. In their
data the changes are linear in slab thickness and an
IV. CONCLUSION asymptotic frequency for two dimensions cannot be deduced.
The frequency changes by more than 20% when the thick-

In this paper the results of parallel numerical simulations
of dipole radiation, based on the Yee's mesh finite-differencd'€SS changes by a factor of two. Johnstral. [19], calcu-
ted TE-like and TM-like guided modes in a two-

time-domain method are presented. To overcome the largé . S ) 2 o
computational demands of Yee's algorithm, we developed dimensional periodic dielectric structures with index guiding
parallel program that improved the speed of the computato confine light in the third dimension. Although som_ewhat
tions with parallel efficiency of 0.7. No symmetry was as- similar, their problem does not discuss defects and is based
sumed for the modes to reduce the lattice size. Localized T\P" @ different technique. n o
defect modes were examined in a two-dimensional photonic Figures 12 and 13 show a surprisingly strong localization
crystal triangular lattice composed of air cylinders drilled ©f the E, defect mode around the defect cylinder. From this
into a dielectric host. Our study was motivated by results fof€Sult we infer that only a few lattice cells around a defect
the TE defect modes by Sakoda and Shirdit@l. The de- are required for good confinement and hiQHactors.
fect was varied by changing the radius of the central cylin-
der. To v_alidate _parallel computer code, we compared our ACKNOWLEDGMENTS
results with previously reported results of Sakoda and ex-
periments of McCalkt al. on TE modes in a square lattice  N.S. would like to thank James Davenport for helpful
with a missing defect cylinder. We established a very goodliscussions. This work was financially supported by the U.S.
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